Bayesian inference as iterated random functions with applications to sequential inference in graphical models

نویسندگان

  • Arash A. Amini
  • XuanLong Nguyen
چکیده

We propose a general formalism of iterated random functions with semigroup property, under which exact and approximate Bayesian posterior updates can be viewed as specific instances. A convergence theory for iterated random functions is presented. As an application of the general theory we analyze convergence behaviors of exact and approximate message-passing algorithms that arise in a sequential change point detection problem formulated via a latent variable directed graphical model. The sequential inference algorithm and its supporting theory are illustrated by simulated examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

Introduction to Probabilistic Graphical Models

Over the last decades, probabilistic graphical models have become the method of choice for representing uncertainty in machine learning. They are used in many research areas such as computer vision, speech processing, time-series and sequential data modelling, cognitive science, bioinformatics, probabilistic robotics, signal processing, communications and error-correcting coding theory, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013